
May 7, 2012
VirtualWire

Copyright (C) 2008-2011
Mike McCauley

Documentation for the VirtualWire 1.9
communications library for Arduino.
rdu-
u-

out
K

tion-

sage
nce,
1.0 Introduction

Arduino is a low cost microcontroller with Open Source hardware, see http://www.a
ino.cc. VirtualWire is a communications library for Arduino that allows multiple Ard
ino’s to communicate using low-cost RF transmitters and receivers.

The document describes the VirtualWire library and how to install and use it.

You can also find online help and disussion at

http://groups.google.com/group/virtualwire

2.0 Overview

VirtualWire is an Arduino library that provides features to send short messages, with
addressing, retransmit or acknowledgment, a bit like UDP over wireless, using AS
(amplitude shift keying). Supports a number of inexpensive radio transmitters and
receivers. All that is required is transmit data, receive data and (for transmitters, op
ally) a PTT transmitter enable.

It is intended to be compatible with the RF Monolithics (www.rfm.com) Virtual Wire
protocol, but this has not been tested.

Does not use the Arduino UART. Messages are sent with a training preamble, mes
length and checksum. Messages are sent with 4-to-6 bit encoding for good DC bala
and a CRC checksum for message integrity.
1 of 13

Overview

 As
lses
en 0s
.

his

le in
y

rs.
Why not just use the Arduino UART connected directly to the transmitter/receiver?
discussed in the RFM documentation, ASK receivers require a burst of training pu
to synchronize the transmitter and receiver, and also requires good balance betwe
and 1s in the message stream in order to maintain the DC balance of the message
UARTs do not provide these. They work a bit with ASK wireless, but not as well as t
code.

2.1 Supported hardware.

A range of communications hardware is supported. The ones listed blow are availab
common retail outlets in Australian and other countries for under $10 per unit. Man
other modules may also work with this software.

Runs on ATmega8/168 (Arduino Diecimila etc) and ATmega328 and possibly othe

2.2 Receivers

• RX-B1 (433.92MHz) (also known as ST-RX04-ASK)

FIGURE 1. RX-B1

Details at http://www.summitek.com.tw/ST_SPEC/ST-RX04-ASK.pdf

2.3 Transmitters:

• TX-C1 (433.92MHz)
2 of 13 VirtualWire

Overview
FIGURE 2. TX-C1

Details at http://www.tato.ind.br/files/TX-C1.pdf

2.4 Transceivers:

• DR3100 (433.92MHz)
VirtualWire 3 of 13

Downloading and installation

the
FIGURE 3. DR3100

Details at http://www.rfmonolithics.com/products/data/dr3100.pdf

3.0 Downloading and installation

The latest version of this document is available from

http://www.open.com.au/mikem/arduino/VirtualWire.pdf

Download the VirtualWire distribution from

http://www.open.com.au/mikem/arduino/VirtualWire-1.9.zip

To install, unzip the library into thelibraries sub-directory of your Arduino appli-
cation directory. Then launch the Arduino environment; you should see the library in
Sketch->Import Library menu, and example code in
File->Sketchbook->Examples->VirtualWire menu.

4.0 Function calls

To use the VirtualWire library, you must have

#include <VirtualWire.h>

At the top of your sketch.
4 of 13 VirtualWire

Function calls

. Not

low

you

 mes-
4.1 vw_set_tx_pin

extern void vw_set_tx_pin(uint8_t pin);

Set the digital IO pin to use for transmit data. Defaults to 12.

4.2 vw_set_rx_pin

extern void vw_set_rx_pin(uint8_t pin);

Set the digital IO pin to use for receive data. Defaults to 11.

4.3 vw_set_ptt_pin

extern void vw_set_ptt_pin(uint8_t pin);

Set the digital IO pin to use to enable the transmitter (press to talk). Defaults to 10
all transmitters require PTT. The DR3100 does, but the TX-B1 does not.

4.4 vw_set_ptt_inverted

extern void vw_set_ptt_inverted(uint8_t inverted);

By default the PTT pin goes high when the transmitter is enabled. This flag forces it
when the transmitter is enabled. Required for the DR3100.

4.5 vw_setup

extern void vw_setup(uint16_t speed);

Initialise the VirtualWire software, to operate atspeedbits per second. Call this once in
your setup() after any vw_set_* calls. You must call vw_rx_start() after this before
will get any messages.

4.6 vw_rx_start

extern void vw_rx_start();

Start the receiver. You must do this before you can receive any messages. When a
sage is available (good checksum or not), vw_have_message() will return true.

4.7 vw_rx_stop

extern void vw_rx_stop();

Stop the receiver. No messages will be received until vw_rx_start() is called again.
Saves interrupt processing cycles when you know there will be no messages.

4.8 vx_tx_active

extern uint8_t vx_tx_active();
VirtualWire 5 of 13

Sample code

 is

age
ted

.

h the
Return true if the transmitter is active

4.9 vw_wait_tx

extern void vw_wait_tx();

Block and wait until the transmitter is idle

4.10 vw_wait_rx

xtern void vw_wait_rx();

Block and wait until a message is available from the receiver.

4.11 vw_wait_rx_max

extern uint8_t vw_wait_rx_max(unsigned long milliseconds);

Wait at mostmilliseconds ms for a message to be received. Return true if a message
available.

4.12 vw_send

extern uint8_t vw_send(uint8_t* buf, uint8_t len);

Send a message with the given length. Returns almost immediately, and the mess
will be sent at the right timing by interrupts. Returns true if the message was accep
for transmission. Returns false if the message is too long (>VW_MAX_PAYLOAD)

4.13 vw_have_message

extern uint8_t vw_have_message();

Returns true if an unread message is available from the receiver.

4.14 vw_get_message

extern uint8_t vw_get_message(uint8_t* buf, uint8_t* len);

If a message is available (good checksum or not), copies up to *len octets to buf.
Returns true if there was a messageand the checksum was good.

5.0 Sample code

The following samples are available as examples in the VirtualWire distribution.

5.1 transmitter

A simplex (one-way) transmitter. Sends a short message every 400 ms. Test this wit
receiver below.
6 of 13 VirtualWire

Sample code

with

uino
#include <VirtualWire.h>
void setup()
{
 vw_setup(2000); // Bits per sec
}

void loop()
{
 const char *msg = "hello";
 vw_send((uint8_t *)msg, strlen(msg));
 delay(400);
}

5.2 receiver

A simplex (one-way) receiver. Waits for a message and dumps it contents. Test this
transmitter above.

#include <VirtualWire.h>
void setup()
{
 Serial.begin(9600);
 Serial.println("setup");
 vw_setup(2000); // Bits per sec
 vw_rx_start(); // Start the receiver PLL running
}
void loop()
{
 uint8_t buf[VW_MAX_MESSAGE_LEN];
 uint8_t buflen = VW_MAX_MESSAGE_LEN;
 if (vw_get_message(buf, &buflen)) // Non-blocking
 {

int i;
// Message with a good checksum received, dump HEX
Serial.print("Got: ");
for (i = 0; i < buflen; i++)
{
 Serial.print(buf[i], HEX);
 Serial.print(" ");
}
Serial.println("");

 }
}

5.3 client

Implements a simple wireless client for DR3100. Sends a message to another Ard
running the server code below and waits for a reply.

#include <VirtualWire.h>
void setup()
{
 Serial.begin(9600);// Debugging only
 Serial.println("setup");
 vw_set_ptt_inverted(true); // Required for DR3100
VirtualWire 7 of 13

Sample code

er
 vw_setup(2000); // Bits per sec
 vw_rx_start(); // Start the receiver PLL running
}
void loop()
{
 const char *msg = "hello";
 uint8_t buf[VW_MAX_MESSAGE_LEN];
 uint8_t buflen = VW_MAX_MESSAGE_LEN;
 vw_send((uint8_t *)msg, strlen(msg));
 vw_wait_tx(); // Wait until the whole message is gone
 Serial.println("Sent");
 // Wait at most 400ms for a reply
 if (vw_wait_rx_max(400))
 {

if (vw_get_message(buf, &buflen)) // Non-blocking
{
 int i;

// Message with a good checksum received, dump it.
 Serial.print("Got reply: ");
 for (i = 0; i < buflen; i++)
 {

Serial.print(buf[i], HEX);
Serial.print(" ");

 }
 Serial.println("");
}

 }
 else

Serial.println("Timout");
}

5.4 server

Implements a simple wireless server for DR3100. Waits for a message from anoth
Arduino running the client code above and sends a reply.

#include <VirtualWire.h>
void setup()
{
 Serial.begin(9600);// Debugging only
 Serial.println("setup");
 vw_set_ptt_inverted(true); // Required for DR3100
 vw_setup(2000); // Bits per sec
 vw_rx_start(); // Start the receiver PLL running
}
void loop()
{
 const char *msg = "hello";
 uint8_t buf[VW_MAX_MESSAGE_LEN];
 uint8_t buflen = VW_MAX_MESSAGE_LEN;

 // Wait for a message
 vw_wait_rx();
 if (vw_get_message(buf, &buflen)) // Non-blocking
8 of 13 VirtualWire

Implementation Details

CS

sage
Bit

 inter-

rrupt
sive
 {
int i;
const char *msg = "goodbye";
// Message with a good checksum received, dump it.
Serial.print("Got: ");
for (i = 0; i < buflen; i++)
{
 Serial.print(buf[i], HEX);
 Serial.print(" ");
}
Serial.println("");
// Send a reply
vw_send((uint8_t *)msg, strlen(msg));

 }
}

6.0 Implementation Details

Messages of up to VW_MAX_PAYLOAD (27) bytes can be sent

Each message is transmitted as:

• 36 bit training preamble consisting of 0-1 bit pairs

• 12 bit start symbol 0xb38

• 1 byte of message length byte count (4 to 30), count includes byte count and F
bytes

• n message bytes, maximum n is VW_MAX_PAYLOAD (27)

• 2 bytes FCS, sent low byte-hi byte

Everything after the start symbol is encoded 4 to 6 bits, Therefore a byte in the mes
is encoded as 2x6 bit symbols, sent hi nybble, low nybble. Each symbol is sent LS
first.

The Arduino Diecimila clock rate is 16MHz => 62.5ns/cycle.

For an RF bit rate of 2000 bps, need 500microsec bit period.

The ramp requires 8 samples per bit period, so need 62.5microsec per sample =>
rupt tick is 62.5microsec.

The maximum packet length consists of

 (6 + 2 + VW_MAX_MESSAGE_LEN*2) * 6 = 408 bits = 0.204 secs (at 2000 bps).

where VW_MAX_MESSAGE_LEN is VW_MAX_PAYLOAD + 3 (= 30).

The code consists of an ISR interrupt handler. Most of the work is done in the inte
handler for both transmit and receive, but some is done from the user level. Expen
functions like CRC computations are always done in the user level.
VirtualWire 9 of 13

Performance

il-

d by

y at

is-

ly
nta-

So...

table
Caution: VirtualWire takes over Arduino Timer1, and this will affect the PWM capab
ities of the digital pins 9 and 10.

7.0 Performance

Unit tests show that the receiver PLL can stand up to 1 sample in 11 being inverte
noise without ill effect.

Testing with TX-C1, RX-B1, 5 byte message, 17cm antenna, no ground plane, 1m
above ground, free space

At 10000 bps the transmitter does not operate correctly (ISR running too frequentl
80000/sec?)

At 9000 bps, asymmetries in the receiver prevent reliable communications at any d
tance

At 7000bps, Range about 90m

At 5000bps, Range about 100m

At 2000bps, Range over 150m

At 1000bps, Range over 150m

As suggested by RFM documentation, near the limits of range, reception is strong
influenced by the presence of a human body in the signal line, and by module orie
tion.

Throughout the range there are nulls and strong points due to multipath reflection.
your mileage may vary.

Similar performance figures were found for DR3100. 9000bps worked.

Arduino and TX-C1 transmitter draws 27mA at 9V.

Arduino and RX-B1 receiver draws 31mA at 9V.

Arduino and DR3100 receiver draws 28mA at 9V.

8.0 Connections

Note that the IO pins can be changed from their defaults (as shown here) to any sui
IO pins using the vw_set_*_pin() calls.
10 of 13 VirtualWire

Connections
8.1 RX-B1 receiver

FIGURE 4. Wiring for RX-B1 receiver

8.2 TX-C1 transmitter

FIGURE 5. Wiring for TX-C1 transmitter

Arduino
RX-B1

11 Data

5V Vcc

Gnd Gnd

Ant

Arduino
TX-C1

12 Data

3V3 Vcc

Gnd Gnd

Ant
VirtualWire 11 of 13

Connections
8.3 DR3100 transceiver

FIGURE 6. Wiring for DR3100

FIGURE 7. DR3100 connections on breadboard

Arduino
DR3100

11

Gnd 10

13

4 Rx Data

RFIO

14RF Gnd

12 5 Tx In

3V3 9

12

1

Vcc

Ctr0

AGC

Gnd

12k

10 11 Ctr1
12 of 13 VirtualWire

Copyright and License

n
ed a
ils).

FM

tyle
ard.

i-

tion
ho
trib-
Ver-
l

re
Connections shown for no AGC, 1mW power out, 2400bps. Note the 12k resistor i
series with Tx In to control the power output If you want to use higher data rates, ne
resistor from pin 8 of the DR3100 to ground (see RFM documentation for more deta

If you want to use AGC, need a capacitor from pin 1 of the DR3100 to ground (see R
documentation for more details).

The DR3100 module is supplied without any connection pins, only surface mount s
pads. You will need to solder pins onto the module if you wish to use it in a breadbo

9.0 Copyright and License

This software is Copyright (C) 2008 Mike McCauley. Use is subject to license cond
tions. The main licensing options available are GPL V2 or Commercial:

9.1 Open Source Licensing GPL V2

This is the appropriate option if you want to share the source code of your applica
with everyone you distribute it to, and you also want to give them the right to share w
uses it. If you wish to use this software under Open Source Licensing, you must con
ute all your source code to the open source community in accordance with the GPL
sion 2 when your application is distributed. See http://www.gnu.org/copyleft/gpl.htm

9.2 Commercial Licensing

This is the appropriate option if you are creating proprietary applications and you a
not prepared to distribute and share the source code of your application. Contact
info@open.com.au for details.
VirtualWire 13 of 13

	1.0 Introduction
	2.0 Overview
	2.1 Supported hardware.
	2.2 Receivers
	2.3 Transmitters:
	2.4 Transceivers:

	3.0 Downloading and installation
	4.0 Function calls
	4.1 vw_set_tx_pin
	4.2 vw_set_rx_pin
	4.3 vw_set_ptt_pin
	4.4 vw_set_ptt_inverted
	4.5 vw_setup
	4.6 vw_rx_start
	4.7 vw_rx_stop
	4.8 vx_tx_active
	4.9 vw_wait_tx
	4.10 vw_wait_rx
	4.11 vw_wait_rx_max
	4.12 vw_send
	4.13 vw_have_message
	4.14 vw_get_message

	5.0 Sample code
	5.1 transmitter
	5.2 receiver
	5.3 client
	5.4 server

	6.0 Implementation Details
	7.0 Performance
	8.0 Connections
	8.1 RX-B1 receiver
	8.2 TX-C1 transmitter
	8.3 DR3100 transceiver

	9.0 Copyright and License
	9.1 Open Source Licensing GPL V2
	9.2 Commercial Licensing

